Еще несколько лет назад такое распознавание смысла текстов и изображений казалось невозможным. Теперь с подобными задачами справляются все больше приложений, работающих по методам машинного обучения, в том числе глубоких нейронных сетей, как в случае с Findo. Нейросети — обучаемые системы, построенные по аналогии с сетью нейронов у человека. Они дали возможность выполнять задания, для которых очень сложно составить конкретный алгоритм. Нейросети состоят из образующих слои узлов, обрабатывающих информацию. Новая информация меняет состояние всей системы, проходя через слои нейронов. Этот процесс называется обучением нейросети. Алгоритм на основе нейросетей, например, может анализировать множество текстов на каком-либо языке и автоматически группировать слова, близкие по смыслу, определять смысловую тональность текста, вычленять конкретные сущности и отношения между ними.
Приручение машин
Об алгоритмах машинного обучения активно заговорили в 2016 году, когда бизнес стал использовать их в приложениях, понятных потребителям. Например, компания DeepMind, купленная Google более чем за 0 млн, снизила расходы на охлаждение дата-центра корпорации на 40%. Теперь DeepMind хочет научить искусственный интеллект сражаться в Starcraft II с реальными геймерами. Cуперкомпьютер IBM Watson, читающий 200 млн страниц за три секунды, будет систематизировать данные в сфере здравоохранения, 80% которых сегодня даже не принимаются в расчет при лечении пациентов. Алгоритмы машинного обучения позволили Microsoft сделать систему для предсказания результатов матчей чемпионата Европы по футболу. Facebook использует машинное обучение для распознавания лиц на фото, анализа текстов и их переводов. В сентябре 2016 года Google, Facebook, Amazon, IBM и Microsoft объединили усилия для создания искусственного интеллекта, который позволит им обмениваться данными.